
Improving advanced particle system by adding property
milestones to particle life cycle

Miroslav Sabo1
University of Maribor, Faculty of Electrical Engineering and Computer Science

Abstract

1 miroslav.sabo@hermes.si

This article provides information on how to create
special visual effects using advanced particle systems,
which may then be used in a computer game. The basic
concept of an advanced particle system is expanded by
introducing property milestones to a particle’s life cycle
in order to provide mechanism for further control over its
properties with respect to particle age. This article covers
the basic principles and some guidelines on how to create
realistic and eye-catching visual effects using this
approach.

Keywords: Property milestones, Advanced particle
system, Real time visual effects.

1 Introduction
Particle systems have the ability to create realistic natural
phenomena in real time. Their superiority over another
computer graphic methods was realized for the very first
time by William Reeves [1] back in 1982 and 1983 when
working on special effects for Star Trek II: The Wrath of
Khan movie. When searching for a method of creating
realistic fire effect he realized that conventional
modeling, which was best at creating objects with
smooth, well-defined surfaces, would not do the trick.
The objects that made up realistic effects such as fire
were not made of easily definable surfaces. These
“fuzzy” objects, as he called them, would be better
modeled as a system of particles that behaved within a
set of dynamic rules. Reeves realized that by applying a
system of rules to particles, which at the time were only
used to create simple effects such as galaxies and distant
stars, he could achieve a chaotic effect while maintaining
some creative control.

Basically, a particle system is just a collection of 3D
points in space. Particles making up the system are non-
static unlike standard geometry objects. Particles are
born, they change over time, and then die off. A key
point regarding particle systems is that they are chaotic.
Instead of having a completely predetermined path, each
particle can have a random element, called a stochastic
component, which modifies its behavior. This random

element is, in fact, the main reason why particle systems
are so good at reproducing realistic effects.

On the other hand some kind of creative control is
desirable over those stochastic elements. This aspect of
the particle system is usually implemented by applying
some given value to a particle’s parameter, while the
stochastic component is given as a variance to this base
value. Some control over particle’s parameters and its
behavior during creating is provided using this approach.

In some cases it is desirable to have further control
over particle’s parameters to achieve different types of
visual effects, such as change of particle color during its
lifecycle. This can be achieved by adjusting the values of
particle’s parameters during its lifecycle. Property
milestones were chosen to achieve this.

A property milestone represents a certain parameter
value at a given point in time in a particle’s life cycle.
The values between two milestones are linearly
interpolated the between values of these two milestones.
Any function describing a particle’s parameter value
within its life cycle can be described using this approach.

An advanced particle system is just a collection of
two or more single particle systems. It is possible to
create more complex visual effects such as realistic fire
with flame, smoke and sparks using advanced particle
system, where each of them is realized as a single
particle system. This can be observed in Figures 1-4.

Figure 1: Single particle system representing fire

So what is needed is some kind of a manager class to
control all particle systems, which make up an advanced
particle system. Such a manager class would be in charge
of creating, releasing, updating, and rendering all of the
systems, although update functions may differ from one
particle system to another. As such, one of the attributes
of the manager class must be an array of pointers to
particle systems or a vector of them.

The manager class has been implemented as an
Advanced Particle System class. Figure 5 shows an
overview of the built system.

Figure 2: Single particle system representing smoke
generated by the fire

Figure 5: System overview

Let's use a bottom-up approach to describe the
developed classes, beginning with the particle class.

The basic element is a particle class. Different
instances of this class, with some additional functionality
for creating and controlling them, are incorporated in the
particle system class. Figure 3: Single particle system representing sparkles

generated by the fire Further more two or more instances of particle system
class are joined together into an advanced particle system
class. Of course, additional functionality also is added.

Note that the needed attributes or building particle
system itself are not in the scope of this article. More
information about that topic can be found in the article
"Building an Advanced Particle System" by John van der
Burg [2].

The following sections present an overview of the
classes used to build this advanced particle systems for
generating various visual effects.

2.1 The particle class
The particle class encapsulates all the types of attributes
a particle must have. Table 1 contains a list of the used
attributes in a developed particle class.

Figure 4: Advanced particle system made of particle
systems in Figures 1-3 produces more realistic fire effect

 2 Built advanced particle system Type Name Description
vector m_vCurPosition current position
vector m_vOldPosition previous position
vector m_vVelocity particle speed
color m_clrCurColor current color
color m_clrOldColor previous color
float m_fCurPower current power
float m_fOldPower previous power
float m_fLifeTime lifetime
float m_fInitTime birth time
float m_fSpin z-axis rotation

As mentioned above an advanced particle system is a
collection of single particle systems. Each particle
system behaves in a unique manner. I.e. in a fire effect a
change in the wind direction vector might be desirable so
that a car moving closely past a smoke system makes the
smoke particles respond to the wind generated by the
passing car, but not to affect other parts of the effect
(fire, sparkles). Updating one particle system may differ
from the method used to update another particle systems
in one advanced particle system.

float m_fSize size
float m_fWeight weight

Table 1: Used particle attributes
There are some essential particle attributes, which

each particle class must have. These are a particle’s age
or its birth time, its lifetime and position. All the others
just increase the realism of the designed effect and are
not essential for a particle system.

Values for its attributes are assigned, as a particle is
born. They depend upon the selected base value and the
defined variance range for a given attribute in a particle
emitter, which are properties of the particle system class.
The stochastic behavior of the developed system was
achieved using this approach. During its lifetime
attributes may change according to the environmental
influences or influences defined by milestones.

2.2 The particle system class
The particle system class is the core of the built advanced
particle system. It takes care of creating new particles,
updating them according to environment parameters and
according to milestones, rendering and destroying of
particles.

Table 2 lists the attributes, which have been used in
the developed particle system class. Note that the particle
attributes shown in Table 1 and the variances for each
one of them, according to which particle attributes are set
at their births, are omitted from the table, although it is,
in fact, also a property of the particle system class (its
particle emitter, in fact).

Type Name Description
int m_iMaxParticles; maximum number of

particles in system
float m_fReleaseInterval particle release

interval
int m_iNumToRelease number of particles

released at each
release interval

float m_fDelay delay before starting
to emit particles

vector m_vGravity gravity acceleration
vector m_vWind wind acceleration
float m_fAirResistence air resistance factor
float m_fOldPower previous power
enum m_eEmmiterMode emitter mode
char* m_pchTexFile name of particle

texture file
Table 2: Used particle system attributes

Each particle system can have different kinds of

particle emitter behavior.
The most common behavior is by a point emitter. If

this emitter is used, all the particles are born at the same
point in space, but with different speed vectors. If the
speed vectors of the particles were to be almost the same
in size (with very small velocity variance), the result

would be something like a spreading particle sphere. Of
course, the directions of the particles’ speed vectors can
also be limited to only two dimensions or even to
different angles in different dimensions.

The next common emitter behavior is line emitting.
In this case the particles are born at random points on a
given line, which can also be a curve, circle, etc. They
can be emitted in or out of the line in an angle range
between 0°and 180°. In and out emitting can be observed
in Figure 6, where a line emitter uses a circle for an
emitting line. Outside emitting means that particles are
emitted outside the circle.

Figure 6: Line particle emitter shaped as a circle and

outside emitting

Basic emitter behavior is also area emission. In this
case rectangular of any other shape of the area is
provided and particles are emitted within this area.

In the particle system class the possibility of choosing
between different behavior has been implemented such
as a point emitter with the possibility to emit only in
certain angle range, a line emitter with the possibility of
emitting in, out or in line both directions (also a possible
emission range angle can be specified) and an area
emitter, which emits within a given area. Different
implemented modes of emitting particles may be
observed in Figure 7.

Figure 7: Supported emitter modes

The rendering of each single particle was realized
using a 2D quads and billboard technique2, due to its

2 In this approach each particle is represented by 2D quad
consisting of 4 vertices in spaces. As rendered, quad is
always rotated in a way that the user always looks into it
(bill-boarding technique) [9].

advantages compared to using point-spites3, such as
unlimited particles sizes.

Particle attributes are updated with respect to the
environmental variables of particle system, but this does
not provided enough control over particle system
behavior, so it was opted to use property milestones to
solve this problem. This used approach is further
explained in section 3.

2.3 The advanced particle system
class

An advanced particle system class has been used as a
manager class to control all of our various particle
systems. This class is in charge of creating, releasing,
updating, and rendering all of its subsystems (particle
systems). As such, one of the key attributes in the
advanced particle system class is an array of pointers to
the particle systems, which are managed by it.

Its basic functions are displayed in Table 3.

Name Description
Init Initializes the advanced

particle system.
AddSystem Adds a specified particle

system.
RemoveSystem Removes a specified particle

system.
Update Update all particle systems
UpdateSystemPosition Update all particle system

positions
Render Render all particle systems
IsActive Check is particle system is

not active anymore (if all of
its particles have died)

Table 3: Advanced particle system class function

All members of particle system class, which were

inherited allowed to link developed particle systems
within the hierarchy of our game engine, thus allowing
the engine to affect the position of each particle system.
As the position of the advanced particle system is
changed by the game or any other application using it,
the positions of all particle systems are also updated
respectively.

This is needed to link visual effect to an object of a
game. The effect of exhaust flames could be attached to a
flying rocket using this approach. As the rocket moves
across the screen, the game engine also updates the
position of advanced particle system, which enables
these particles to be emitted at the correct position. This

is not needed, if you are building a stand-alone particle
system.

3 Updating particle properties
using property milestones in
its lifecycle

In order to create realistic visual effects using particle
systems, it was necessary to have very good control over
particle properties, but the stochastic nature of particles
should not be sacrificed to achieve this.

Some control over a particle’s parameter such as its
size is provided as the given particle is born. Base value
and its variance are passed as properties of the particle
system, which emits particles, as shown in the following
formula.

pParticle->m_fSize = m_fSize + vRandomVec.x *

m_fSizeVar;

By assigning base value and setting variance to 20%,

it can be assured that particle size, which is assigned to it
as it is being created, will be between 80% and 120% of
the given base value.

The behavior of each particle can be further
influenced during its lifecycle by using environmental
parameters. These can be used for particle parameters
such as its speed. Current particle speed is update during
its lifecycle according to particle initial speed, wind and
gravity,.

In some cases the provided control is insufficient to
achieve the desired effect. Only the staring size of the
particle, which would differ for particle to particle, can
be set using this approach. It would still remain the same
during its whole lifecycle. What if its size or its color
needs to be changed according to some function during
its lifecycle?

In order to achieve this goal, property milestones
have been introduced to particles’ lifecycles. A property
milestone is basically a relative value for particle initial
or current property value, which is applied at certain
points in time during a particle’s lifecycle. An example
of property milestones for particle size is shown in
Figure 8.

3 Point sprites are a new feature in Microsoft DirectX 8.1
APIs. DirectX 8.1 defines a point sprite as a textured
point with texture co-ordinates 0,0 in the top left corner
and 1,1 in the bottom right corner [11]. This feature
exists in OpenGL graphic library as well.

Figure 8: Property milestones for particle size

 Values at certain times of particle lifecycle between
two property milestones follow the linear function
defined by these two milestones. Any time-dependent
function which the particle’s property value needs to
follow during its lifecycle, can be linearly approximated
by adding more property milestones

Relative value is used to preserve the stochastic
nature of the particle system. It is multiplied to initial or
current particle’s attribute value to gain more control
over particle behavior. The use of relative factor values
was chosen in the range from 0% to 200%, but using
different ones can be chosen too.

Figure 12: Waterfall effect

Some problems while trying to visualize the particles,
emitted by the particle system, were encountered during
implementation. The first version implemented an
approach using point sprites for rendering particles. This
approach proved to be insufficient for our purposes. The
maximum sizes of the particles varied from one video
card to another and the rotation of particles around the z-
axis was impossible to implement using this approach.
The old-fashioned approach using quads and bill
boarding was used instead, which proved to be
satisfactory.

This approach may be applied both to particle
attributes, which are unaffected by environmental forces
(i.e. particle size), and those, which are effected by them
(i.e. particle speed). When applying to the second group,
the relative factor at a given point in time must be
applied to the current particle attribute value in order to
preserve all influences applied to it by environment until
this point.

The following code shows how relative milestone
value was applied to the size attribute of the particle.

DirectX 8.0a library was used for rendering the
advanced particle system.

 It very easy to give additional functionality and
further enhance the visual effects using class inheritance. pParticle->m_fCurSize = pParticle->m_fSize *

GetSizeOverLife(fAge / (pParticle->m_fLifeTime)); All developed visual effects can be easily integrated
into simple 3D video games as shown in Figure 13.

Additional control over the particle properties was
provided using explained approach, while the stochastic
nature of the particle system remained intact.

Figure 13: Created explosion with shock wave effect
used in video game

4 Conclusion
Creating suitable visual effects by implementing an
advanced particle system using property milestones is
flexible, fast, extensible and quite easy. Various visual
effects have been created, which are shown in figures 9 -
12.

Figure 9: Explosion with shock wave effect

Of course, the implemented advanced particle system
is far from being perfect. It could be improved in many
ways, which can be addressed in future work.

Particles could have additional properties such as
separate sizes in the x and y directions. Achieving this
would enable the stretching of particles during their life
cycles, which can be very useful for providing visual
effects of various light rays or effects during
teleportation (often used in computer games and science
fiction movies). Further improvement would be to
expand the particle emitter with new emitting modes. In
addition a very interesting idea would be to possibility
add the change of emitter’s properties during its emission
time (similar to what was already done to the particle
properties). For instance, doing this it would be possible

Figure 10: Big explosion effect

Figure 11: Fireworks effect

to control how many particles the same emitter would
emit over different time intervals.

References
[1] W.T. Reeves, Particle Systems - a Technique for

Modelling a Class of Fuzzy Objects. In ACM
Transactions on Graphics, ACM, Academic press,
April 1983

[2] W. T. Reeves, Approximate and Probabilistic
Algorithms for Shading and Rendering Structured
Particle Systems. In Computer Graphics, vol. 19, no.
3, pp 313-322, 1985.

[3] John van der Burg, Building an Advanced Particle
System. Available from Gamasutra.com at
http://www.gamasutra.com/features/20000623/vand
erburg_pfv.htm

[4] Markus Hadwiger, Real-Time Special Effects for a
Computer Game Using Particle Systems. Available
from http://www.cg.tuwien.ac.at/~msh/partsys.pdf

[5] C. W. Reynolds, Flocks, Herds, and Schools: A
Distributed Behavioural Model, Computer
Graphics, vol. 21, no. 4, pp 25-34, 1987.

[6] Jing Zhong, Particle Animation and Procedural
Texture Maps. Available from http://cs-
people.bu.edu/jingzh/CS580/P2/CS580p2.htm

[7] Todd Reed and Brian Wyvill, Visual Simulation of
Lightning. In Proceedings of SIGGEAPH '94, pp.
359-363, 1994

[8] Mel Guymon, Pyro-Techniques: Playing with Fire.
In Game Developer, vol. 7, no. 2, pp. 23--27, Feb.
2000.

[9] Tomas Akenine-Möller, Eric Haines, Billboarding,
Excerpt From Real-Time Rendering 2E, september
2002. Available from
http://www.flipcode.com/articles/article_rtr2billboar
ds.shtml

[10] Mason McCuskey, Special Effects Game
Programming with DirectX, The Premier Press,
2002

[11] Microsoft, DirectX 8.1 SDK, Microsoft, 2002.
Available from http://msdn.microsoft.com/directx

	Abstract
	Introduction
	Built advanced particle system
	The particle class
	The particle system class
	The advanced particle system class

	Updating particle properties using property milestones in its lifecycle
	Conclusion
	References

