
Heuristic approach to automatic texture atlas composition

David Sedláček*

Czech Technical University in Prague

* sedlad1@fel.cvut.cz

Abstract
We present a solution for a variant of the 2D containment
problem, to create a texture atlas. The texture atlas is an
efficient color representation for a given VRML scene. It
contains a composition of several texture images stored in
one file. The containment problem is the question how to
place a set of shapes into a “container shape” without
overlapping, while minimizing the area of the container.
In our case we place a set of texture images of arbitrary
shape into a rectangle. We use a heuristic search
algorithm based on Minkowski operators to solve the 2D
translational containment problem. This particular
problem is called packing problem and is known to be
NP-complete. We present its practical implementation
and show results measured on several test scenes.

Keywords: Minkowski operators, texture atlas, packing
problem.

1 Introduction
Both number and size of files negatively influence the
speed when large virtual worlds are transferred over the
Internet. For a given virtual scene, we can efficiently
decrease a number of texture files using a texture atlas.
The texture atlas is a bitmap containing a set of input
textures. When using a good packing method, the size is
decreased, too. Saving a texture memory of graphic card
is thus a next good reason for using texture atlases.
Unfortunately a combination of texture atlas and
mipmapping technique is impossible in general, but this
specific issue is not the goal of this paper.

The basic idea of our algorithm is to extend
successively an arbitrary-shaped container with incoming
arbitrarily-shaped textures by attaching the textures on the
outer border of the container. The goal is to keep the
rectangular area of the resulting container as small as
possible. The Minkowski operation is used to compute
efficiently all positions the incoming polygon can be
attached to using translations. Afterwards we choose that
position where the container area is minimally expanded
and the empty space between polygons is the smallest
(with “placing operator”).

We did not implemented rotations yet but we consider
them as important improvement of the next version of the
algorithm. However the angle of rotation different from
multiples of π/2 brings degradation of the texture quality
due to the necessary interpolation among pixels applied
during the rotation of input raster image(s). The second
problem with rotations arises in back-mapping of the
texture map to the original 3D object. The texture
mapping coordinates are from interval <0, 1> and if we
rotate by a small angle the change is manifested in
decimal places. We cannot be sure in number of decimal
places VRML browsers work and if they recognize such
“little” changes. From there reasons we expect useful
rotations only by multiples of π/2.

This paper is organized as follows. Section 2 presents
a related works, section 3 deals with VRML specific
issues – image formats, and texture mapping. We define
morphological operators and their properties in the
section 4. We skip a formal description of the 2D
translational containment problem and the state definition,
since they are well described in [4]. Instead, we
concentrate on the heuristic searching method and
containment strategy in section 5. Finally, several
examples and measurements are shown in section 6.

2 Related Work
Texture atlases are widely used in computer games.
Avatar texture atlas is the most known example, see
fig. 1. Such texture atlas is usually explicitly defined -
first the texture atlas is designed, then this bitmap is
mapped on avatar body. A priori knowledge of the avatar
model is required.

Automatic texture atlas generation for arbitrary, but
single 3D object was described in [3].

In our approach, we process textures and scenes of
arbitrary structure, having no explicit knowledge about
their relationships.

Related research about containment algorithms can be
subdivided into four categories [5]:

• The physics approach, which applies classical physics

theory by adding potential energy to the shapes to
place, that can be viewed as physical elements.
However, solving these large equations take a large
amount of time, what makes it useless when we need
fast results.

• The Computational Geometry approach, which latest
development in multi-polygon rotational case [1] can
place convex m-gon P into convex n-gon container Q
by solving linear programs.)(44nmO

• The Operational Research approach, which can lead to
practical results, but tend to become more complex
when rotations are part of the equation.

• The Meta-Heuristic approach, which can obtain
interesting results if the selected heuristic is
appropriate, but fail to be applicable when the input
space increases substantially.

The texture atlas packing problem is often solved with the
meta-heuristic approach. For tens of texture images, it
gives satisfying results in a very short time while other
approaches tend to be much slower than the heuristic
method. In the method proposed by Sander at al. [6], the

bounding boxes of the polygons are packed. They first
sort bounding boxes by area sizes, then rotate them to
align the longer axis of the rectangle with the vertical
direction. In order to decrease a height, they place the
rectangles sequentially into rows alternating left-to-right
and right-to-left order.

Another heuristics proposed by Lévy at al. [3] work
directly with polygonal shapes. They initially sort
polygons like Sander, but taken the inspiration at game
Tetris, they let polygons fall down vertically and search
for the best horizontal position on top of already
positioned shapes.

These heuristics are fast but they are not able to cover
unused empty space that can naturally appear inside
already positioned polygons. For this reason we have
decided to take inspiration at Minkowski operators.
Minkowski operators make possible to find these unused
places in a short time. Minkowski operators (especially
difference) tend to be faster than normally known
techniques for solving collisions - they do not inform us
whether there is a collision, but they tell us where the
collision never occurs.

3 Textures in VRML
Three bitmap types are used in VRML scenes - GIF, JPG,
and PNG. Due to different image format characteristics,
we have to solve the containment problem for these
formats independently. If using a combination of these
formats in the final texture atlas, accuracy, transparency,
and compression would be negatively influenced and
complicated. For example, when converting GIF to PNG,
we lose animation possibility. When GIF or PNG image
would be converted to JPG format, the lossy compression
would cause image degradation.

Fig. 1: An avatar and corresponding texture atlas
(from http://www.allelves.ru/forest/)

Since we want to keep the image quality of all original
textures unchanged, we have to manage JPG images in
a special way. The DCT transformation processes pixels
arranged in blocks of 8 x 8 pixels. This block is called
superpixel. If input textures are placed into the texture
atlas close to each other, original superpixels should not
overlap. That is why we process JPG images on the level
of superpixels (see fig. 2c) instead of single pixels such as
in the case of PNG files.

Input sets for our test scenes usually contained from 5
to 60 texture files (the maximum was almost 200 images).
Figure 2 presents one typical example of one texture file
in JPG format. It can be seen that one input image can
contain pixels/texels that are not mapped to a 3D model.
Those pixels can be avoided from further processing, thus
achieving more efficient use of space in the final atlas.

After placing input images into the texture atlas, all
relevant texture coordinates have to be recomputed in the
source VRML file(s). Such remapping process includes
only a simple arithmetic. A problem occurs when the
original texture image is applied as a tile, i.e. the VRML
source code maps its 2D texture coordinates out of the
standard range <0, 1>. Although this is a regular VRML

http://www.allelves.ru/forest/

technique, it cannot be used in combination with the
texture atlas, since newly computed texture coordinates
are directed to another image data in this case. We seek
for such a situation in the VRML code and avoid relevant
image from the texture atlas creation. For this reason, our
method can produce more than only one output image file
for a specific image format.

a) One JPG texture image
from the input set.

b) Convex hull of image
data really mapped to 3D
surface. Remaining white
space represents wasted
area.

c) Polygon approximation
with respect to DCT
superpixels. Each small
square size is 8*8 pixels.

d) Our final polygon
representation. The square in
left bottom corner is the
reference point (0, 0).

 Fig. 2: Input JPG image and corresponding polygon
representation

4 Theoretical Background
In this section we introduce the basic operators and their
properties, especially Minkowski sum and difference
operator. Operators help us to find non-overlapping
positions for each polygon in the container. This section is
based on the work of Marques at al. [4].

Let , . Usually, , . 2, ZBA ⊆ 2Zt ∈ 2, RBA ⊆ 2Rt ∈

In our approach, we consider A, B, and t as sets of
discrete points.

A B

Morphological mirror of A, (-A), is

(1) }:{)(AaaA ∈−=−

Translation A by t, A+t, is

}:{ AatatA ∈+=+ (2)

A+t

Minkowski sum A with respect to B, , is BA⊕

U
Bb

bABA
∈

+=⊕ (3)

BA⊕

The Minkowski sum keeps four relation terms –
reflexivity, commutative law, associative law, and
transitivity [2]. The following relations define the
Minkowski sum for sets and vectors.

(4) tAtA +=⊕ }{

(5) tBAtBA +⊕=+⊕)(

The most useful property determines how translations of
shapes are mapped from and into Minkowski sum sets.
We have the following fundamental property.

(6) ()() (()BAtAtB −⊕∈)⇔∅≠∩+

The Minkowski difference A with respect to B, BAΘ , is
defined as follows.

BABA ⊕=Θ
(7)

BAΘ

Minkowski difference keeps the previous terms (reflex.,
commut., assoc., transit.) like that Minkowski sum.

The following property says that if a shape B
positioned at point t is contained in A, then the point t
belongs to the Minkowski difference of A with the mirror
of B. By using this property we can get the set of all
points t in which B fits into A just by computing the
difference [4].

(8) ()() ()()∅≠−Θ∈⇔⊆+ BAtAtB

5 Heuristic Searching
We start with an empty container C, with zero x and y size
(Cx = 0, Cy = 0, Area(C) = 0). Then we add the first
polygon A1 from the input set to the container C, thus
obtaining a new status (, C1AC + x = A1x, Cy = A1y).
The following algorithm is applied when searching for the
best position of the next polygon A from the input set to
be added to the container C.

Compute the Minkowski difference Md of C with
respect to A, see in fig. 3.
This gives us a set of translation vectors t, which
applied on A causes overlapping C with A. We
actually need the opposite of this.

1.

ACM d Θ=

Fig. 3: Container (smaller polygon) showen together
with computed Minkowski difference (bigger area).
Second polygon for M. difference was polygon A at
fig. 6. Those two areas overlapped. The one filled
square in bigger area represents reference point (0,0).

2. Compute Od as the outer border of the Md area, i.e.
find all 4-connected neighboring pixels of Md (fig.
4.). Then Od is a set of vectors t, which defines all
translations of A to positions close to C, see fig. 5.
Such translations are candidates for the final
positioning of A.

Fig. 4: Outer border of Md area (Od), in relation with
container.

To find the best position of A, we evaluate every
translation vector t (tx,ty) from Od set using
containment strategy that is explained in details
below, in fig. 5.
Polygon A, translated to its final position, is then
added to the container C, sizes Cx, Cy are updated,
and the algorithm is repeated until all input polygons
are processed.

3.

Fig. 5: Placing polygon A next to container C at one
position from Od. We can see the exact matching A to
C.

Containment Strategy
When searching for the best translation vector t for
polygon A in container C, our aim is to minimize the final
container area, see fig. 6. Theoretically, the best t does not
change that area at all.
a)

b)

Fig. 6: Minimization of the container area (depicted as
hashed rectangle). Two sample translation vectors, t1
(figure a) and t2 (figure b), were used for positioning the
polygon A. Figure a) exhibits better results (smaller
occupied area) than b).

Since more than one translation vector can satisfy the
smallest container area condition, we have designed one
additional criterion - placing operator. The operator
concentrates on filling the empty space inside the
container. Although this can generally enlarge the overall
container area (see fig. 7), this strategy often leads to
better utilized/covered internal space.

a)

b)

Fig. 7: The placing operator has been designed to
maximize occupied neighborhood around the newly
placed polygon A. Such a neighborhood is highlighted

by the hatched rectangle; its occupancy by already
placed polygons is depicted by solid pixels in red. The
higher number of occupied pixels, the higher the placing
operator value. Figure a) shows a placing operator with
value 104 that is better than figure b) with value 69.

To combine the container area minimization approach
with the placing operator application, we have designed
the following empirical containment strategy procedure
controlled by a single parameter weight:

1. For each vector t, compute area and place values.

The area is the final container area size; the place is
the placing operator value.

2. Find the minimal area value and store it as minimal
area.

3. Remove all vectors t having area > minimal area +
weight.

4. Among remaining vectors, find the one with the
smallest place value and use that vector for
positioning the polygon in the container.

The weight says how much we accept worse solutions in
terms of the container area size. However we are not able
to determine the best weight value. In our tests, the
optimal weight value was within the range from 0 to 200
pixels (i.e. from 0 to 10% of current container area
respectively). We observed certain dependencies on
container area and placed polygon area. Our further
experience is described in the following section.

Strategy Evaluation and Experiences
Based on measuring of various input sets, we have got the
following observations.

The first polygon added to the container affects the
final texture atlas the most. That is why we implemented
several selection techniques for the first polygon together
with sorting other input polygons. We have got good
results when sorting polygons top to down by their area
size. Unfortunately, we have found several sets where
random polygon selection behaved better. We also tried to
compare more configurations for one set of input
polygons. We have generated up to 100 random
sequences of input polygons for the same scene and then
we compared the created texture atlases. The result of
such comparisons is shown in Fig. 10.

If the created texture atlas area is similar to a square or
rectangle with side ratio about 4:3 (see fig. 8), we
generally get better results both from the perspective of
file size and required texture memory. Here, the weight
value helps to achieve such a square-like shape. Without
using it, rectangles tend to be too long or high.

Fig. 8: Texture atlas (left) and 3D model (right). The size of the atlas is 1605 x 1014 pixels.

Fig. 9: Texture atlas generated using a placing operator with higher weight (10% of container area). The algorithm is
trying to find the best position for every input texture using information from already placed polygons (the highest value
of placing operator) but does not care about final rectangular container area size. We can see similarly shaped polygons
placed near to each other.

Number of
bitmaps

Summed file size
[kB]

Texture memory
allocation [kB]

Transfer
time[s] Scene

Input Output Input Output Input Output Input Output

File size
reduction

[%]

Transfer
time

reduction
[%]

Bell tower 30 1 182 168 5853 5013 20 15 8 25

Tower-b1 13 6 169 146 1399 1553 13 9 14 31

Tower-b2 15 7 79 64 1525 1110 8 7 18 12

Bridge-b3 15 5 76 39 665 700 6 4 48 33

Bridge with towers 42 17 278 236 3389 3163 23 17 15 26

Maribor plague 116 64 869 730 11565 12602 64 47 16 17

Town Hall 168 43 1077 1007 20220 21145 71 48 7 33

Maribor synagogue 43 16 1093 978 13776 16261 50 41 10 18

Turk well 66 1 289 166 4197 3662 15 8 43 47

Table 1: A comparison of test scenes without and with texture atlases

6 Results
The algorithms described in the previous section were
implemented in Java. Figure 8 shows an example (Bell
tower) consisting of 30 JPG input images. In this case,
the file size of the final texture atlas was 19% less than
the sum of all input file sizes. We also measured the
time for transferring a 3D scene (wrl file + bitmaps)
over Internet using phone line. We observed a drop
from 20 s for the original data set to 15 s for the scene
with the texture atlas.

The texture atlas in fig. 8 was computed in 16
seconds on Pentium 1,5 GHz. Since a short processing
time was not the primary goal of this work, we consider
this value as acceptable. More results are shown in
Table 1.

Figure 9 shows the texture atlas for the same input
set as for fig. 8, but with a setting that accepts worse
container area, while emphasizing the placing operator.

For several models, the size of allocated texture
memory is bigger than for the original input. This
occurs when input texture polygons fully fill their
rectangular image areas, thus composition of textures in
the final atlas cannot cover any unused space and stack
up empty space leaved by placing algorithm. In this case
is more obvious how much empty space is left by the
placing algorithm.

The quality of texture atlas can be expressed as
decrease of final size (texture atlas size with respect to
summed input files size) that affects the time needed for
data transfer. It can be also expressed as reduction of
necessary texture memory (similar to previous).
Because our main intention is to transfer files faster
over the Internet we focused at the first criterion.

100 input size

file size

texture memory

0 21 5 10 50 100

 90

 80

 70

120
decrease of texture size [%]

number of
permutations

100 input size

0 21 5 10 50 100

 90

 80

 70

120
decrease of texture size [%]

number of
permutations

Turk well Bell tower

Fig. 10: Quality of texture atlas depending on the length
of the iteration process in containment strategy.

Figure 10 shows how the texture atlas quality increases
with the number of tested configurations/permutations
of a given input texture set. We measured two different
scenes. The results were very similar. After processing
the first five configurations, the resulting atlas sizes
became better than for the input files. Then the next
progress brought slightly better improvements, although
not very distinguishable. For example, a difference of
the atlas quality between the 10th and the 113th
configuration was only 2% in terms of texture memory
and about 1% in terms of files size.

7 Conclusion and Future Work
We have implemented a method that combines a set of
texture images into a texture atlas. In most cases, this
technique decreases the overall file sizes. Both lower
size and lower number of files have a positive effect on
data transfer over Internet.

Algorithm works well for arbitrary-shaped textures,
with normal size (big and small together) or small size
textures. If there are more large textures than the small
ones, or textures with rectangular shape, the placing
algorithm leaves more empty space (it does not have
any small textures to be placed to empty spaces).

The content of the resulting texture atlas is still far
from the optimum. We do not have the best solution and
from the first look at our texture atlases, it is obvious
that some polygons should lie at another place. In order
to minimize unused space, we need to improve our
containment strategy. One possibility is to increase
the number of iterations in the searching process. We
are also going to extend our concept with a rotation
operator. Since smooth rotation of a polygonal shape
would cause troubles with texture coordinates
remapping and image quality degradation, we want to
apply only rotations by multiples of π/2.

Acknowledgments
I want to thank my professor, Jiří Žára, from Czech
Technical University in Prague. I also thank VRVis
Center in Graz, Technical University in Graz, and
Maribor University of Technology for providing test
data.

References
[1] T.M. Cavalier, R.B. Grinde . A New Algorithm for

the Two-Polygon Containment Problem.
Computers and Operations Research 24(3):231-251
,1997.

[2] H. Cohn: Advanced Number Theory. Dover
Publications, Inc., New York, 1980.

[3] B. Lévy, S. Petitjean, N. Ray, J. Maillot. Least
Squares Conformal Maps for Automatic Texture
Atlas Generation. In SIGGRAPH 02 Conf.Proc.,
pages 362-371, ACM Press, 2002.

[4] N. Marques, P. Capela, J. Bernardo: Heuristic
Reasoning for 2D Containment Problems. In:
WSCG'99, pages 180-185 (Volume I), Pilsen:
University of West Bohemia, 1999.

[5] N. Marques, P. Capela, J. Bernardo: Solving
Multiple Layer Containment Problems Using
Iterative Methods. In: WSCG'00, pages 204-211
(Volume II). Pilsen: University of West Bohemia,
2000.

[6] P. Sander, J. Snyder, S. Gortler, H. Hoppe. Texture
mapping progressive meshes. In SIGGRAPH 01
Conf. Proc., pages 409-416, ACM Press, 2001.

	Abstract
	Introduction
	Related Work
	Textures in VRML
	Theoretical Background
	Heuristic Searching
	Containment Strategy
	Strategy Evaluation and Experiences

	Scene
	Number of bitmaps
	Summed file size [kB]
	Texture memory allocation [kB]
	Transfer time[s]
	File size reduction [%]
	Transfer time reduction [%]
	Results
	Conclusion and Future Work
	Acknowledgments
	References

