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Department of Control Engineering and Information Technology
Budapest University of Technology and Economics

Budapest / Hungary

Abstract

This paper proposes a novel algorithm for correcting the
Partial Volume Effect in Positron Emission Tomography
(PET) images, using registered Computed Tomography
(CT) data to enhance the blurred PET image. The algo-
rithm is based on a forward-and-backward anisotropic heat
equation solver that deblurs the PET image along CT gra-
dients. A forward diffusion force is also utilized to stabi-
lize the process where necessary. The algorithm retains
average original PET intensity and avoids the introduc-
tion of negative PET values, a crucial property in clinical
uses. A GPU implementation of our work is outlined and
we present the reconstruction results on measured PET/CT
data.

Keywords: Partial Volume Effect, diffusion, GPU, PET,
PDE

1 Introduction

Positron Emission Tomography (PET) has the potential
to produce quantitatively accurate measurements of tracer
concentrations in vivo [15]. However, it has a limited
spatial resolution and the reconstructions are blurred and
rather noisy if radiation dose should be limited, which is
always the case in clinical practice [14]. The direct conse-
quence of limited resolution is the loss of signal for struc-
tures partially occupying the Point-Spread Function (PSF)
of the scanner, i.e., with dimensions smaller than about 2-
3 times its FWHM [11]. This effect is usually referred to
as Partial Volume Effect (PVE).

PET/CT systems allow simultaneous acquisition of PET
and CT data. Hence the idea arises to enhance the blurry
PET image with CT information. The main assumption
is that tissue boundaries appearing in both images enables
correction relying on anatomical data. This assumption
seems realistic as different tissue types have different den-
sity (thus different intensity in CT scan), and also the ra-
diotracer density depends on the tissue type. Therefore on
the boundaries of different tissues, it is assumed that both
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CT and PET values change and thus CT and PET bound-
aries are co-located.

There are multiple approaches to correct PVE [2, 13,
5, 12, 3, 1, 15], although they usually require some a
priori information about the scanner, or pose impracti-
cal assumptions. Popular methods that incorporate high-
resolution anatomical information in the PET image are
based on a multi-resolution image fusion approach, as-
suming that the gray levels in the high-resolution image
must be positively correlated with those of the functional
image to be corrected for PVE [15]. As pointed out in our
earlier work, this assumption may be implausible [8].

The rest of the article is organized in the following
way: first, Section 2 presents a short introduction to dif-
fusion processes, particularly anisotropic diffusion along
with previous works. Then, in Section 3 we propose our
backward diffusion process, followed by the discussion of
our stabilization method, and the combination of the two
processes. Later, we discuss medical criteria and a modifi-
cation to our algorithm in Section 3.3. Finally implemen-
tation details and results are presented and conclusions are
drawn.

2 Anisotropic Diffusion

Partial Differential Equations have been widely studied
and applied in the field of image processing in the past
decades. A particular application area is image denoising
and enhancement. The simplest denoising diffusion pro-
cess [7] solves the heat equation in the form

∂x
∂ t

= ∇2x (1)

where x is an N-dimensional scalar function over the im-
age domain. Solving this equation is equivalent to a con-
volution with a Gaussian kernel, and thus it filters the im-
age uniformly. This uniformity causes unnecessary loss of
information in addition to noise removal [17, Ch. 1.2]

To overcome this limitation, an edge-preserving non-
linear diffusion process was first introduced by Perona and
Malik [10]. Here, the diffusion process is controlled by
a diffusion coefficient. They chose this coefficient a de-
creasing function of the image gradient, slowing down the
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smoothing near edges. The Perona-Malik equation is

∂x
∂ t

= ∇ · (g(∥∇x∥)∇x) (2)

with a monotone decreasing diffusivity function g(s), such
as

g(s) =
1

1+
( s

λ
)2 . (3)

A further extension of the diffusion process applies a
tensor which controls the flux of the process instead of
a scalar-valued diffusivity coefficient. In certain applica-
tions it would be desirable to bias the flux towards the ori-
entation of interesting features, avoiding the removal of
these. The equation becomes then

∂x
∂ t

= ∇ · (D ·∇x) , (4)

with the diffusion tensor D, a positive definite symmet-
ric matrix. The Perona-Malik process can be extended to
reduce noise near edges without destroying them. The dif-
fusion tensor is chosen in a way that it prefers diffusion
along edges to diffusion perpendicular to them.

Diffusion processes can also be used for image deblur-
ring and enhancement. A method proposed by Gilboa et
al. [6] simultaneously sharpens and denoises the image
while locally varying the diffusion coefficient. Their al-
gorithm switches between a backward and a forward dif-
fusion process based on the image gradient. The back-
ward process is basically solving the heat equation (Eq. 2)
backwards in time, simply having a negative diffusion co-
efficient. As the forward diffusion process is a convolu-
tion with a Gaussian kernel, similarly the backward diffu-
sion can be described as a deconvolution operation. The
process can be imagined as pushing PET values upward
along “slopes”, emphasizing gradients. As pointed out in
their work, this backward diffusion process is highly un-
stable, and they use a custom diffusivity function to over-
come this, combining a forward and a backward diffusion
force in a single process.

3 Proposed Method

Our main objective is to sharpen the blurry PET image,
enhancing the edges present in it, by using the registered
anatomical data. Therefore, we use a new approach where
a backward diffusion process is stabilized with a forward
process. Our method works in arbitrary dimensions, but as
medical data is usually in 3D, after the N-dimensional the-
oretical explanation, we present the implementation only
in 3D.

3.1 The Backward Process

For the edge-enhancement we use an anisotropic backward
diffusion process. To introduce high-frequency anatomical

(CT) information in the PET image, we bias the sharpen-
ing process by CT edges. To do so, we define our diffu-
sion tensor based on CT gradients. Let p be the PET, and
c be the CT gray-value function giving the intensities in
each position (voxel in 3D) in the image domain. Also, let
∇ĉ = ∇c

∥∇c∥ , then we define the tensor as

Dĉ = |∇ĉ⟩,⟨∇ĉ|= ∇ĉT ·∇ĉ,

where ⟩·, ·⟨ is the outer product in the Euclidean space.
This dyadic tensor has eigenvalues λ1 = 1 with corre-
sponding eigenvector parallel to the CT gradient, and λ2 =
λ3 = 0 with corresponding eigenvectors perpendicular to
the CT gradient. This can be seen as an outer product
matrix always has rank one. This tensor is then used in
Eq. 4. Here, PET gradients parallel to CT gradients are
preferred, so the sharpening process enhances them more
effectively. This way, PET intensity flows through CT gra-
dients, creating PET edges along the CT ones. However,
as there is no force to compensate the sharpening effect,
PET values diverge into extremities disregarding actual
tissue boundaries. This can be seen intuitively, as slopes
become steeper, the same amount of activity confines to a
smaller region determined by PET distribution and not CT
edges.

3.2 Stabilization

Our goal is to enhance tissue boundaries instead of just
sharpening the PET image, and to approximate original
positron activity in those regions. Therefore, a stabiliza-
tion force is required to slow down or reverse the enhance-
ment process if PET regions shrink below tissue bound-
aries. In order to stabilize the backward diffusion process,
we combine the sharpening process with a forward one.
In our novel method, two opposing forces are applied, a
sharpening backward diffusion along CT edges, and a sim-
ple forward diffusion force to stabilize PET regions.

We combine the two forces in one process by a linear
combination of their corresponding tensors. The forward
diffusion has the identity matrix as its tensor (resulting in
Eq. 1). We determine the strength of the two forces by lo-
cal features explained in this section. Our combined pro-
cess now has the form

∂ p
∂ t

= ∇ ·
(
(λĉDĉ +λII) ·∇p

)
. (5)

This combination benefits from both the edge-
enhancement and region-stabilizing processes, leading to
improved PET regions along tissue boundaries.

To create PET edges along tissue boundaries, we aim to
create PET gradients co-located with CT ones. Therefore,
we classify local features based on the gradients’ magni-
tudes. Intuitive analysis shows four primary cases:

• High PET gradient magnitude with high CT gradi-
ent magnitude. In this case, PET edges are already
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strong along CT ones, so the algorithm should no fur-
ther sharpen the image. Both processes should slow
down.

• Low PET gradient magnitude with high CT gradient
magnitude. Here, more sharpening is required to en-
hance edges, so the backward force should be empha-
sized.

• High PET gradient magnitude with low CT gradi-
ent magnitude. This occurs when PET edges are
falsely created where no tissue boundary is present.
This may be due to over-sharpening, or reconstruc-
tion noise. In this case, the stabilizing process should
have greater emphasis.

• Low PET gradient magnitude with low CT gradient
magnitude. Here, the process should not affect the
image, as these conditions are present within tissues
in normal case.

Based on these cases we derive two functions scaling
the two opposite force. To obtain stability and visually
satisfying results, these two functions must be continuous
and differentiable over the positive real domain. The scal-
ing function for the backward process should be mono-
tone increasing in the CT gradient magnitude and decreas-
ing in the PET gradient magnitude. The scaling func-
tion of the forward process should behave the opposite
way. To scale the processes according to the magnitude
of gradients we use a smoothed step function, for exam-
ple, sstep(x) := 2

π arctan(x). Then the parameters λĉ and
λI in Eq. 5 are replaced with the functions

fĉ (∥∇p∥,∥∇c∥) := (1− sstep(∥∇p∥))sstep(∥∇c∥) ,
fÎ (∥∇p∥,∥∇c∥) := sstep(∥∇p∥)(1− sstep(∥∇c∥)) .

Notice that the scaling functions have an implicit effect on
the diffusivity as their sum is not always 1, so they control
the overall process speed as well as the ratio of the two
forces.

To control image smoothness, we introduce a parame-
ter to maximize the value of the forward scale function.
With this parameter, we can determine the ratio of the two
force, and thus the extent of PET regions compared to ac-
tual tissue sizes. The larger the forward process scale, the
more space is filled with PET intensity and the smoother
the image is. Our system equation becomes

∂ p
∂ t

= ∇ ·
((

(1−µ) fĉDĉ +µ fII
)
·∇p

)
. (6)

Note that the scaling function parameters are omitted for
simplicity.

3.3 Meeting Medical Criteria

PET is a quantitative measurement method, which means
image intensities hold essential information about the tis-
sue being analyzed. Obviously, negative values are invalid,

so they should be avoided. Moreover, local average inten-
sity needs to be retained as it holds crucial information.

To avoid negative values, we introduce an explicit dif-
fusivity function. Negative values are a result of over-
sharpening as the lower parts of the sharpened edge be-
come negative. This effect is to be avoided, and thus we
slow down and completely stop the process as values ap-
proach the zero boundary. We use a low value cut-off
function to gradually slow down the diffusion processes
for small PET values:

lowcutoff(x) :=

{
x2

1+x2 if x ≥ 0,
0 if x < 0.

It can be easily seen that this function makes the diffusivity
smoothly diminish at low PET values.

It is not enough to simply scale the divergence value in
Eq. 6, because it would not scale symmetrically the dif-
fusion process, leading to incorrect values, especially re-
garding local average intensity. So we must scale gradients
instead. As the gradient in a point is affected by the local
infinitely small neighborhood of that point, we must take
the PET values of that neighborhood into account. Tak-
ing the minimum of the neighboring PET values clearly
suffices to stop the diffusion process as soon as intensi-
ties approach the zero-boundary. As the partial derivatives
are affected by points along each axes, only those must
be considered. So the diffusivity function defined in the
N-dimensional image space, at point i0 becomes

diffity(i0) := lowcutoff

(
min

N∪
n=1

{ξ+
n (i0) ,ξ−

n (i0)}

)
,

where

ξ±
n (i0) := lim

∆→0,∆̸=0

(
p
(

i0 + e±∆
n

))
,

and e∆
n is a vector with e∆

n = ∆ in the n-th position, and
0 elsewhere. This formula equals lowcutoff(i0) as p is
continuous, although it implies a different formulation in
discrete space, having a critical effect on the implemen-
tation, and thus the usability of this algorithm. Inserting
the diffity functional d into Eq. 6, the system equation
becomes

∂ p
∂ t

= ∇ ·
(

d
(
(1−µ) fĉDĉ +µ fII

)
·∇p

)
. (7)

This way we have avoided negative values by stopping the
diffusion as soon as PET intensities approach the negative
domain.

There is no well-established theory of general non-
linear anisotropic diffusion methods, except for some sim-
pler cases [16, 17]. As Weickert [17, pp. 63-64] pointed
out, certain types of anisotropic diffusion processes retain
average grey value. This requires well-posedness, which
is not guaranteed in our case. However, due to the sta-
bilization and similarity to the forward problem based on
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divergence-form and the smooth scaling functions, we ex-
pect that the average gray level is not divergent. This is
examined empirically in Section 5.

4 Implementation

Our proposed method is implemented and tested in 3D as
it is the usual dimension of medical data. We solve Eq. 7
using a forward Euler time-marching scheme, and use cen-
tral differences spatial differentiation. First, we scale the
PET image to the (presumably) larger CT image size by
a simple tri-cubic filter on the GPU. We iterate until there
is no significant change in the image, when we have ap-
proached the steady-state solution well enough. This is
measured using the sum of absolute difference between
each subsequent image:

diff
(

pt , pt+1) := ∑
i∈Ω

|pt (i)− pt+1 (i) |,

where pt is the PET image after iteration t (t = 0 gives the
initial PET image), and i ∈ Ω is a point in the image space.
When this difference falls below a threshold, we stop iter-
ating. To determine this threshold independently from the
actual image, we use the first difference, i.e. diff

(
p0, p1

)
as a unit, and define the stopping condition as

diff
(

pt , pt+1)≤ ε ·diff
(

p0, p1) .
Obviously, larger ε leads to coarser, less sharpened image.

As for the force functions, in order to maximize their
effect we scale gradients using the mean gradient magni-
tudes. Defining

MGM(∇x) =
1

∥Ω∥ ∑
i∈Ω

∥∇x(i)∥,

we get

sstep(2) (∇x) :=
2
π

arctan
(

∥∇x∥
MGM(∇x)

)
.

The CT gradient case is analogous. Clearly, the step func-
tion will take 1/2 on average-size gradients; a normal dis-
tribution of gradient magnitudes assumed, this way our
step function maximizes the spread of scaling values.

We have implemented the Euler-scheme on the GPU,
using OpenCL and C++. Voxel intensity calculations are
inherently massively parallelizable, and hence the algo-
rithm can be implemented efficiently.

5 Results

We tested the proposed algorithm using two real mea-
sured data with a GTX 480 graphics card and 8GB sys-
tem RAM. The first one is a mouse measurement, the
CT image size is 217 × 211 × 528, and the PET image
size is 136× 132× 330 (Data courtesy of P. Blower, G.

µ 0.01 0.05 0.1

Time (m:s) 8:27 7:47 5:34

Iter. cnt. 1110 1025 716

Diff 83.32% 63.25% 49.89%

Table 1: Running times of the mouse measurement with
different µ values (ε = 0.05), and the corresponding ab-
solute differences per average PET intensities at the last
iteration.

µ 0.01 0.05 0.1

Time (m:s) 10:09 7:11 6:44

Iter. cnt. 1096 764 713

Diff 61.89% 30.7% 25.92%

Table 2: Running times of the Derenzo measurement with
different µ values (ε = 0.05), and the corresponding ab-
solute differences per average PET intensities at the last
iteration.

Mullen, and P. Mardsden, Rayne Institute, King’s College,
London). We ran our method for multiple µ and ε val-
ues. Corresponding line profiles are shown in Fig. 4. As
explained earlier, lower µ values increase sharpness and
decrease residual intensity between tissues, making them
more confined. On the other hand, they introduce more
noise. Larger ε values cause the process to stop before
reaching maximum sharpness (based on µ). As seen in
Fig. 2, too small µ values cause tissues not to be filled cor-
rectly as well as more CT noise added to the image, and
too large µ values leave more intensity spilled out by PVE.
Tables 1 and 2 show running time statistics of the measure-
ments with different µ values. Notice that the less smooth
image is produced, the less time it takes to converge, and
the less the difference from the original image will be due
to less sharpening. Also, running time is much lower than
that of the typical PET reconstruction. The error curve is
depicted in Fig. 6. Notice the visible convergence of dif-
ferences. Average gray-value is not constant, although it
seems converging to an approx. 1.25% change.

Our other measurement is a Derenzo phantom of rod
diameters in 0.7mm – 1.2 mm with CT image size 333×
333× 281, and PET image size 173× 173× 146 (image
created with Mediso Ltd.’s NanoPET/CT [9]). It is a quite
noisy measurement, but our algorithm can still achieve im-
provement compared to the original PET image. As seen
in Fig. 5, small µ values lead to noisy results, but the rods
have more significant contour. Fig. 3 shows the original
images and two results. Notice that small rods became
more observable. As before, less sharpening causes the
algorithm to converge in fewer iterations.
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PET CT

Figure 1: Original PET mouse image, and registered CT
data. Data courtesy of P. Blower, G. Mullen, and P. Mards-
den, Rayne Institute, King’s College, London.

µ = 0.1 µ = 0.05 µ = 0.01

Figure 2: Upgraded images of the mouse for different µ
values, µ = 0.1, µ = 0.05, µ = 0.01 .

6 Evaluation

We proposed a novel way of correcting Partial Volume
Effect while introducing anatomical information into the
PET data. Compared to other approaches, this method
uses only the PET and the CT (or any other anatomical)
data, and thus no a priori information of the scanner or the
region examined is needed, making it more versatile. Fur-
thermore, this approach works on a pixel level, producing
a corrected image and not only regional calculated values,
hence it can be visually evaluated too. Our method is a
post-processing algorithm, so it is optional and is indepen-
dent from the reconstruction algorithms, and the registra-
tion algorithm. As stated before, our method does not rely

Figure 3: Original PET (top left), CT (top right), and two
results (bottom) of the Derenzo measurement, with µ =
0.1,ε = 0.05 (bottom left) and µ = 0.05,ε = 0.05 (bottom
right) parameter values. Data courtesy of Mediso Ltd. [9]
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Figure 4: Line profiles of the mouse measurement for dif-
ferent µ (ε = 0.05) (top) and ε (µ = 0.05) (bottom) pa-
rameter values.
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Figure 5: Line profiles of the Derenzo measurement for
different µ (ε = 0.05) (top) and ε (µ = 0.05) (bottom) pa-
rameter values.
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Figure 6: Path of convergence for the mouse measurement,
µ = 0.05,ε = 0.05. Absolute differences (top) and average
gray-value (bottom).

on assumptions about correlation of PET and CT gradi-
ents.

Our method heavily relies on the PDE-solver, and thus
it is prone to the speed and stability of the underlying al-
gorithm, this implies that multiple solving schemes should
be tested. The aim of introducing anatomical data is to
provide visually satisfying results, where PET activities
are approximated in smaller regions, possibly aiding clin-
ical diagnosis. In some cases this might be misleading,
but our method is optional and can be disabled to compare
with the original PET data. There is only one parameter
that controls the sharpness of the resulting image, though
it also controls the noise introduced, and in some cases it
would be more satisfying to adjust multiple parameters to
optimize the resulting sharpness and noise.

7 Conclusion

We proposed an algorithm for Partial Volume Effect cor-
rection for PET reconstruction using registered CT data.
Our method is a combination of a backward anisotropic
diffusion and a forward diffusion process. Their combi-
nation is based on local gradient magnitudes. Additional
conditions are applied to meet medical criteria. We im-
plemented our method for GPU-s, and tested it with real-
world examples. Results show that our method effectively
sharpens the PET image, creating edges on tissue bound-
aries, as well as retaining structural and functional infor-
mation. Even in quite noisy circumstances, our algorithm
can achieve improvement over the original PET image.
This enhancement procedure is expected to be part of the
PET reconstruction code of the TeraTomoTM program [4].
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